PHYSICAL REVIEW E

VOLUME 52, NUMBER 3

SEPTEMBER 1995

Scaling theory of particle annihilation in systems with a long-range interaction
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A scaling theory is presented which takes into account the influence of long-range power-law interac-
tions on the density decay rate in a system of charged particles which move in a viscous medium and an-
nihilate via the bimolecular reaction 4, + A_ —0. Various regimes of the annihilation process depend-
ing on system dimensionality d and long-range-force power exponent n, are discovered and analyzed.
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In recent years, the problem of particle annihilation via
reaction of the type 4, + A_—0 in systems with or
without long-range forces acting between the particles
has been studied intensely because of wide range of its
possible applications (astrophysics, plasma physics,
chemical kinetics, solid state physics, etc. [1-4]). The
case with no long-range interactions present has become
well known after Toussaint and Wilczek [3] suggested
that particle density p decays with time as ¢ 9’4, due to
the growth of one-species domains that slows annihila-
tion and yields an anomalous dimension for the density
field. This effect vanishes in four dimensions, where fluc-
tuations become weak and crossover occurs to the mean-
field behavior, characterized by particle density decay as
t 1, as expected for a bimolecular reaction (see, e.g., [5]).
(Note that for a one-species annihilation problem,
A + A —0, no anomalous dimension arises and p <t ~¢/2
with crossover to mean field at d =2, as expected from
pure dimensional analysis. We will not discuss this case
here anymore.) Computer simulations have been carried
out for the reaction 4, + A _ —0 [6], mostly confirming
the general results of Toussaint and Wilczek.

The case with long-range interactions is of interest
mostly because of its connection with XY-model kinetics,
in which field singularities can be treated as particles. In
the two-dimensional XY system, vortices and antivortices
interact via (1/r) force. Several computer simulations of
such systems, recently carried out, showed that annihila-
tion of these singularities exhibits a rather nontrivial dy-
namics [7]. In our recent work [8], the annihilation of
point defects in freely suspended liquid crystal films was
simulated and a scaling theory was proposed to explain
strong deviations from the mean-field equation p(#) ¢ 1.
Following the ideas of Mondello and Goldenfeld [9], we
considered the role of initial fluctuations in the annihila-
tion kinetics and showed that in a two-dimensional sys-
tem with charged particles interacting via 1/7 force, par-
ticle number density decays with time as ¢ ~%/7. In this
paper, we develop a scaling theory for systems of arbi-
trary dimensionality d and long-range force power ex-
ponent n and show that the role of initial fluctuations is
rather unique in the d =2, n =1 case (discussed in [8]).
We also investigate the range of validity of the mean-field
theory for different d and n and find critical points in
(d,n) space, where mean-field exponents coincide with
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scaling predictions.

We consider a d-dimensional system consisting of par-
ticles of negative (—g) and positive (+gq) charges, in-
teracting via the pairwise force

_1192

R n
where R is the interparticle distance. The system as a
whole has zero total charge, which means that the aver-
age density of positive particles, p, is always equal to
the average density of negative particles, p_. Of course,
at any given moment there are subregions with excess of
positive particles or negative particles.

We will consider only systems with 2<d =<4 for
reasons that will be explained later. The phase space
(d,n) is shown in Fig. 1, where points I, I1, and III corre-
spond to Toussaint-Wilczek systems with integer d; point
IV corresponds tod =2, n =1.

We define as a special class of systems the ‘“Gaussian”
systems, which satisfy the condition n =d —1. For such
systems, the Gauss theorem holds, meaning that in any
selected domain of (large enough) size L, equilibrium
charge density fluctuation is given by (for details see
(8,9])

Fy, , (1)

8N _ (podoL?™)'/?
cgL? L?

Sp(L)z gPO(L/dO)h(d-H)/Z ,

(2)

where c;=m,4mw/3 for d =2,3 and for spherical region;
dy,=(p,)'’¢is the characteristic length at time ¢ =0.

Another remarkable class of systems is that with no
long-range interaction: particles interact only by annihi-
lating when they come within distance ry from each oth-
er. In this case, fluctuations of particle number are pro-
portional to V'N, and density fluctuations are therefore
given by

8N _ (L)'
cqL? LY

8p(L)= =po(L/d,) "2, 3)

We can expect, obviously, that for all systems between
these two extreme cases (i.e., with d —1<n < + ), par-
ticle number of fluctuations change from one limit to
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FIG. 1. Phase diagram in (d,n) plane. Lettered regions cor-
respond to A—“Anomalous” region: pxt”Y, wv<lI,
(R?)xt'*e, £¢>0; B—“Diffusive” region: pxt™, wv<l,
(R?) «<t; C—*“Kinetic-rate or mean-field” region: po<t~},
(R?) <t. Roman numerals correspond to systems for which
numerical simulations have been done. The dashed line is the
border between diffusion (above) and superdiffusion (below) sys-
tems; the dashed-dotted line is the line of Gaussian systems—
the region below this line corresponds to unphysical cases; the
solid line is the border between slow fluctuation-limited annihi-
lation (left) and quick mean-field annihilation (right).

another as n grows. Therefore, for all systems with d =2,
n = 1, we assume

8p(L)=py(L /dy) ™", )

where u(n,d) is taken to be a linear function of d and
(1/m), satisfying both borderline cases (linear interpola-
tion):
d—1

2n

,u(n,d)zg-i- (5)

Now, let us consider particle dynamics. Motion of an
ith particle is described by the Langevin equation:

dzRi _ 9,4

+m =
2 +1

n— (R, —R,)+ (1),

(6)

where 7 is the inverse mobility, m is the particle mass,
the j summation is over all pair interactions, and f;(¢) is
a thermal random force. Two terms on the right-hand
side of Eq. (6) are the forces driving deterministic and
diffusion components of particle motion in the system.

In the absence of large-scale fluctuations, particles
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would move only diffusively; even though random forces
from neighbors would influence the motion of a particle,
they would only rescale the diffusion constant and have
no effect on the annihilation exponents. Still, in order to
note this rescaling, we will use the notation D’ instead of
D, meaning that both thermal and interaction random
forces are included.

Large-scale density fluctuations change this picture
dramatically. In the system, there exist regions with net
positive charge and regions with net negative charge. We
will again see the enhanced diffusivity described in the
previous paragraph, but now some of the particles
(predominantly those that initially happened to be in re-
gions with nonzero net charge) will travel large distances
before annihilation, and their motion will be more La-
grangian than Brownian. We would say these particles
constitute the mobile part of the system, while the other
ones, that initially were in neutral regions, constitute the
immobile part of the system [10]. Then, we can formu-
late two principles governing annihilation kinetics:

(i) The trajectory of mobile particles is determined
mainly by the density of other mobile particles, not by
the density of immobile particles.

(ii) The particle density decay is determined by the
slower of the following two processes: travel of mobile
particles between net-charged regions and annihilation of
immobile particles in neutral regions. If the second pro-
cess is slower, mean-field behavior with annihilation ex-
ponent 1 is observed, otherwise different fluctuation-
produced exponents can appear.

Let us now compare these two processes for an arbi-
trary system, denoted by a point (d,n) in two-
dimensional phase space.

Immobile particles obey the standard kinetic equation:

dp;
dt

where g, _(r,t) is a pair correlation function for particles
with opposite charges, p; is the density of immobile parti-
cles, and K is the reaction rate constant.

If we set g (r,¢t)=1 (neglecting fluctuations), we obtain
the well-known mean-field result (for large ¢)

pi=(Kt)"'. (8)

=—Kg, _(ro,t)p?, @)

Annihilation of mobile particles is fully determined by
their displacements. Since at the beginning they found
themselves surrounded by particles of the same charge,
they need to travel to the nearest cluster of particles of
opposite sign before annihilation. We suppose that
mobile particles can start annihilating when their dis-
placement becomes comparable to L, defining a time ¢, .

On the other hand, for each L, the density of mobile
particles is given by Eq. (4). This allows us to state that
at time t;, the density of mobile particles is 8p(L) [as
defined in Eq. (4)], and the displacement of each mobile
particle is of the order of L. To describe the mobile parti-
cle density decay, therefore, we need to establish the ex-
act dependence of ¢; on L, or vice versa. To do this, we
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transform equation of motion (6) by multiplying both
parts by R; and ensemble-averaging it over all mobile
particles (see, e.g., [11]):
2
dR? _,.p'+ SF*R)
dt
We assume that force acts in general along the trajec-
tory, so the second term on the right-hand side is nonzero
and can be estimated as

(FxR)=q*p(L)]" "L , (10)

while on the left-hand side, R?=L?2 After substituting
p(L) from Eq. (4), we obtain for the ¢ dependence of L:

dL?
dt

where a=np.

The system of Egs. (4), (5), and (11) describes the decay
rate for the density of mobile particles. It is important to
notice that this system is valid only for L >>d,. In this
limit, from Eq. (11) one can obtain L (), and thereby
t; (L), so that L becomes a parameter mapping initial
density fluctuation 8p(L) to the density p at time #;. By
solving Eq. (11), therefore, we obtain a scaling law of par-
ticle density decay.

We now analyze some possibilities for the dependence
of annihilation kinetics on d and n. First, in order to
have the nondiffusion contribution to mobile particle
motion prevail, the power of L on the right-hand side of
Eq. (11) ought to be positive. If this is not the case, the
forces between mobile particles are weak and at the later
stage of the annihilation process cannot compete with
diffusion; mobile particles drift in the system in almost
the same way as the immobile ones. This leads us to the
requirement that 1—a >0. Systems that satisfy this con-
dition lie below the dashed line in Fig. 1. For those sys-
tems, we can disregard diffusion terms when integrating
Eq. (11) to obtain

9)

=2dD’'+(q*/n)p/VdgL ">, (11)

L=dj(g*t/n), (12)
p=d§(q’t/n)"", (13)
where 7=(u—n)/(1+a), «=1/(1+a), o=(a—d)

—alu—n)/(1+a), and v=u/(1+a). Thus, for the
d =2, n =1 case, corresponding to defect interaction in
two-dimensional systems, we obtain v=6/7=0.85,
k=4/7~=0.57. Since the mean-field exponents are v=1,
x=0.5, we find that for such a system, large-scale fluctua-
tions slow down annihilation, even though mobile parti-
cles travel faster than diffusion. As we will see, for two-
dimensional systems, long-range fluctuations always slow
down the annihilation very significantly.

All other physically interesting cases correspond to
points in the (d,n) plant that lie above the dashed line in
Fig. 1. In those cases, interaction between mobile parti-
cles is not strong enough to compete with random forces,
and mean-square displacement of mobile particles be-
comes the same as that of immobile ones: L2=2dD't,
while the time dependence of the mobile particle density
now becomes
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p=dS(D't)"", (14)

where o =pu—d, v=(u/2).

According to postulate (ii) above, if the density decay is
to be determined by mobile particle annihilation, this
process has to be slower than bulk annihilation, and
therefore, v has to be less than 1. This inequality divides
the (d,n) plane into two parts as shown in Fig. 1 with a
solid line, and for all systems with n <(d —1)/(4—d) the
mean-field description of the annihilation process is
correct. It can be seen that for all systems with d >4,
mean-field theory always can describe the kinetics of par-
ticle annihilation reasonably well. For the case d =2, the
mean-field description never works for physically in-
teresting systems. For the borderline case d =3, the
mean-field description is correct for the case n =2 (ionic
solution, Coulomb forces), but fails for all other cases.

To sum up, we calculate decay exponents for several
integer d’s and n’s and compare them with experimental
or computational data (see Table I).

For d =2, n =1, comparison is made with our own
simulation results [8]; for d =2, n = «, comparison is
made also with our simulation results, as well as with
simulations and theoretical calculations by Toussaint and
Wilczek [3] and Kang and Redner [2]; for d =3, n = o0,
results of numerical simulation of Leyvraz [12], as well as
theoretical predictions of Kang and Redner and Le-
bowitz and Bramson [13] were used for comparison.

For d =2, n =1, we also measured mean-square dis-
placement of particles as a function of time and found
that at large times, particles indeed move quicker than
expected in pure diffusive systems. In Fig. 2 (reprinted
from [8] with modifications), the “expected pair annihila-
tion time” ¢, (quantity proportional to the square of the
initial distance between two annihilating particles R ?) is
plotted in double logarithmic coordinates versus the actu-
al time of the annihilation ¢,. The slope of the curve
changes from 1 at short times (diffusive behavior) to ap-
proximately 1.14 at long times (superdiffusive behavior).
Within the accuracy of the simulation, measured ex-
ponent 1.14%0.05 is in perfect agreement with the pre-
dicted value k=% ~1.143.

The proposed scaling theory is the first attempt thus
far to include arbitrary power-law long-range interactions
of charged particles in the annihilation picture. It was
known for some time that for d <4, diffusion, rather than
the reaction kinetics itself, determines long-time density
decay. We showed here that inclusion of long-range in-
teractions speeds up annihilation process significantly by
two mechanisms: suppression of initial charge density

TABLE 1. Exponents v for the density decay, p(¢) <t ™", for
different d, n.

n 1 2 3 ©
AN
2 0.84 (0.85-0.9) 0.625 0.58 0.50 (0.5-0.55)
3 1.0 0.92 0.75 (0.75)
4 1.0 1.0
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FIG. 2. “Expected annihilation time” vs actual annihilation
time for a simulated system with d =2, n =1. “Expected an-
nihilation time” is the time required for the chosen pair to an-
nihilate in the absence of other charged particles and is propor-
tional to the square of the initial distance between annihilating
particles, with the proportionality constant K =(7/44¢?); actual
annihilation time is the measured time between the start of the
simulation and the annihilation of the chosen pair; log-log scale
is used. Solid line has slope 1 (diffusive behavior), dashed line
has slope 1.14 (measured —superdiffusive behavior).

fluctuations and, in some cases, acceleration of particle
drift from areas with nonzero local net charge. The latter
mechanism is working only when the long-range interac-
tion is very strong (close to n =1) and system dimen-
sionality is rather low (close to d =2). Thus, in the case
d =2, n =1, at large times, particles are found to be trav-
eling much larger distances than expected, and, in partic-
ular, mean-square displacement { R?) is proportional not
to ¢, but to ¢8/7, in agreement with our theory (for more
details, see [8]). This phenomenon, to our knowledge, has
not been observed before, and it is characteristic for all
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systems that belong to region A in Fig. 1. It should be
seen, for example, in studies of XY systems quenched to
very low temperatures (much lower than the Kosterlitz-
Thouless [14] transition).

Region B corresponds to system with diffusion-type
particle dynamics and slow annihilation. The decay ex-
ponent v for all systems in this area is much less than 1
and is less than for systems with the same d of class A.
This class includes case n = oo, which is well known and
theoretically explained.

Region C corresponds to systems with diffusion-type
particle dynamics and mean-field decay behavior. For
those systems, initial clusters of particles of one charge
diffuse out quicker than (1/¢), so the system becomes
well stirred even before significant annihilation could
occur. Such systems are in a kinetic, rather than a
diffusive, limit.

The borderline cases between regions B and C, which
include the important case of ions in three dimensions,
most likely are well described by the mean-field decay
law. Nevertheless, there is a possibility of a logarithmic
correction to the mean-field result.

The proposed scaling approach obviously fails for d <2
and strong interactions (n <1). Indeed, the Gaussian
system for d =1, for example, has n =0, and thus, a
(1/n) expansion is no longer applicable in the vicinity of
this point.

In order to obtain better understanding of the role of
long-range interactions in annihilation processes, it will
be necessary to use the more elaborate (1/n) expansion
instead of the linear interpolation employed in this work.
Such a task should require use of the renormalization
group formalism, similar to that implemented in one-
species annihilation problem [15,16].
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